added alts to blog images
This commit is contained in:
parent
dd9ca5fe26
commit
73c3dcc1dc
|
|
@ -84,6 +84,7 @@ button.arrow {
|
||||||
margin: 0;
|
margin: 0;
|
||||||
transform: rotate(225deg);
|
transform: rotate(225deg);
|
||||||
transition: transform 1s;
|
transition: transform 1s;
|
||||||
|
cursor: pointer;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
|
|
|
||||||
|
|
@ -34,7 +34,7 @@
|
||||||
<section class="blog_post" id="first">
|
<section class="blog_post" id="first">
|
||||||
<button class="arrow"></button>
|
<button class="arrow"></button>
|
||||||
<h1 class="blog_title">Binary to Denary Conversions</h1>
|
<h1 class="blog_title">Binary to Denary Conversions</h1>
|
||||||
<img class="blog_image" src="assets/blog/images/first.png"/>
|
<img class="blog_image" src="assets/blog/images/first.png" alt="Binary Conversion Table"/>
|
||||||
<p class="blog_content">The image above is an example of a table we can use to convert <span class="moreInfo">8-bit binary numbers<span class="extraInfo">referred to as bytes</span></span> to denary.
|
<p class="blog_content">The image above is an example of a table we can use to convert <span class="moreInfo">8-bit binary numbers<span class="extraInfo">referred to as bytes</span></span> to denary.
|
||||||
Each individual bit is put into each column in the same order as written. Any columns with a 1 should have their values added together.
|
Each individual bit is put into each column in the same order as written. Any columns with a 1 should have their values added together.
|
||||||
The resulting value is the denary conversion.
|
The resulting value is the denary conversion.
|
||||||
|
|
@ -50,7 +50,7 @@
|
||||||
<section class="blog_post" id="second">
|
<section class="blog_post" id="second">
|
||||||
<button class="arrow"></button>
|
<button class="arrow"></button>
|
||||||
<h1 class="blog_title">Binary Addition</h1>
|
<h1 class="blog_title">Binary Addition</h1>
|
||||||
<img class="blog_image" src="assets/blog/images/second.jpg"/>
|
<img class="blog_image" src="assets/blog/images/second.jpg" alt="Example of Binary Addition using Long Addition"/>
|
||||||
<p class="blog_content">In primary school we are taught to use long addition to sum numbers on paper. The practice relies on the concept of carrying digits to
|
<p class="blog_content">In primary school we are taught to use long addition to sum numbers on paper. The practice relies on the concept of carrying digits to
|
||||||
other columns when the simple addition excedes 10. We can use the same technique to add binary numbers just instead of carrying when
|
other columns when the simple addition excedes 10. We can use the same technique to add binary numbers just instead of carrying when
|
||||||
exceding 10, we do this at 1. The best way to visualise this is with a couple of rules whenn carrying. First, when adding two 1s in a column,
|
exceding 10, we do this at 1. The best way to visualise this is with a couple of rules whenn carrying. First, when adding two 1s in a column,
|
||||||
|
|
@ -60,7 +60,7 @@
|
||||||
<section class="blog_post" id="third">
|
<section class="blog_post" id="third">
|
||||||
<button class="arrow"></button>
|
<button class="arrow"></button>
|
||||||
<h1 class="blog_title">Binary Subtraction Using 2's Complement</h1>
|
<h1 class="blog_title">Binary Subtraction Using 2's Complement</h1>
|
||||||
<img class="blog_image" src="assets/blog/images/third.jpg"/>
|
<img class="blog_image" src="assets/blog/images/third.jpg" alt="Example of 2's Complement"/>
|
||||||
<p class="blog_content">Subtraction in binary is a little hard as it is not as intuitive as the addition. To subtract two binary numbers we use a method known as
|
<p class="blog_content">Subtraction in binary is a little hard as it is not as intuitive as the addition. To subtract two binary numbers we use a method known as
|
||||||
2's complement. 2's complement is a way of expressing a binary number as a negative. After doing this conversion, you can just add the two
|
2's complement. 2's complement is a way of expressing a binary number as a negative. After doing this conversion, you can just add the two
|
||||||
numbers and it will give the same answer as if the two numbers were subtracted in denary. To find 2's complement, you begin by inverting
|
numbers and it will give the same answer as if the two numbers were subtracted in denary. To find 2's complement, you begin by inverting
|
||||||
|
|
@ -71,7 +71,7 @@
|
||||||
<section class="blog_post" id="fourth">
|
<section class="blog_post" id="fourth">
|
||||||
<button class="arrow"></button>
|
<button class="arrow"></button>
|
||||||
<h1 class="blog_title">Binary to Hexadecimal Conversions</h1>
|
<h1 class="blog_title">Binary to Hexadecimal Conversions</h1>
|
||||||
<img class="blog_image" src="assets/blog/images/fourth.png"/>
|
<img class="blog_image" src="assets/blog/images/fourth.png" alt="Denary to Hexadecimal Conversion Table"/>
|
||||||
<p class="blog_content">Hexadecimal is another base system used in programming. Just like binary and denary hexadecimal creates a new column when it's
|
<p class="blog_content">Hexadecimal is another base system used in programming. Just like binary and denary hexadecimal creates a new column when it's
|
||||||
limit is reached (15). However, as the base system is higher than our standard system (denary), we use letters (A-f) to express the
|
limit is reached (15). However, as the base system is higher than our standard system (denary), we use letters (A-f) to express the
|
||||||
numbers 10-15 so that they can be single digits.</p>
|
numbers 10-15 so that they can be single digits.</p>
|
||||||
|
|
@ -87,7 +87,7 @@
|
||||||
<section class="blog_post" id="fifth">
|
<section class="blog_post" id="fifth">
|
||||||
<button class="arrow"></button>
|
<button class="arrow"></button>
|
||||||
<h1 class="blog_title">Software Life Cycle</h1>
|
<h1 class="blog_title">Software Life Cycle</h1>
|
||||||
<img class="blog_image" src="assets/images/profileImage.png"/>
|
<img class="blog_image" src="" alt="Image"/>
|
||||||
<p class="blog_content">Lorem ipsum dolor sit amet consectetur adipisicing elit. Iste mollitia repellat, possimus nesciunt aspernatur quisquam doloremque! Illo, debitis distinctio, nostrum voluptatum possimus minus odio quaerat quia fugit maiores porro. Lorem ipsum dolor sit amet, consectetur adipisicing elit. Cupiditate quas recusandae dolorum sunt porro vero, temporibus nesciunt cum, sint iure quis suscipit dignissimos maiores cumque debitis nihil, eveniet dolores nemo.</p>
|
<p class="blog_content">Lorem ipsum dolor sit amet consectetur adipisicing elit. Iste mollitia repellat, possimus nesciunt aspernatur quisquam doloremque! Illo, debitis distinctio, nostrum voluptatum possimus minus odio quaerat quia fugit maiores porro. Lorem ipsum dolor sit amet, consectetur adipisicing elit. Cupiditate quas recusandae dolorum sunt porro vero, temporibus nesciunt cum, sint iure quis suscipit dignissimos maiores cumque debitis nihil, eveniet dolores nemo.</p>
|
||||||
<p class="blog_details"></p>
|
<p class="blog_details"></p>
|
||||||
|
|
||||||
|
|
@ -95,7 +95,7 @@
|
||||||
<section class="blog_post" id="sixth">
|
<section class="blog_post" id="sixth">
|
||||||
<button class="arrow"></button>
|
<button class="arrow"></button>
|
||||||
<h1 class="blog_title">Requirements Engineering- Why do we need it?</h1>
|
<h1 class="blog_title">Requirements Engineering- Why do we need it?</h1>
|
||||||
<img class="blog_image" src="assets/images/profileImage.png"/>
|
<img class="blog_image" src="assets/images/profileImage.png" alt="Image"/>
|
||||||
<p class="blog_content">Lorem ipsum dolor sit amet consectetur adipisicing elit. Iste mollitia repellat, possimus nesciunt aspernatur quisquam doloremque! Illo, debitis distinctio, nostrum voluptatum possimus minus odio quaerat quia fugit maiores porro. Lorem ipsum dolor sit amet, consectetur adipisicing elit. Cupiditate quas recusandae dolorum sunt porro vero, temporibus nesciunt cum, sint iure quis suscipit dignissimos maiores cumque debitis nihil, eveniet dolores nemo.</p>
|
<p class="blog_content">Lorem ipsum dolor sit amet consectetur adipisicing elit. Iste mollitia repellat, possimus nesciunt aspernatur quisquam doloremque! Illo, debitis distinctio, nostrum voluptatum possimus minus odio quaerat quia fugit maiores porro. Lorem ipsum dolor sit amet, consectetur adipisicing elit. Cupiditate quas recusandae dolorum sunt porro vero, temporibus nesciunt cum, sint iure quis suscipit dignissimos maiores cumque debitis nihil, eveniet dolores nemo.</p>
|
||||||
<p class="blog_details"></p>
|
<p class="blog_details"></p>
|
||||||
|
|
||||||
|
|
|
||||||
Loading…
Reference in New Issue