diff --git a/assets/blog/images/fourth.png b/assets/blog/images/fourth.png new file mode 100644 index 0000000..4c46043 Binary files /dev/null and b/assets/blog/images/fourth.png differ diff --git a/assets/blog/images/second.jpg b/assets/blog/images/second.jpg new file mode 100644 index 0000000..f3199e6 Binary files /dev/null and b/assets/blog/images/second.jpg differ diff --git a/assets/blog/images/third.jpg b/assets/blog/images/third.jpg new file mode 100644 index 0000000..7440be1 Binary files /dev/null and b/assets/blog/images/third.jpg differ diff --git a/blog/blog.css b/blog/blog.css index a47293a..99e0a03 100644 --- a/blog/blog.css +++ b/blog/blog.css @@ -17,6 +17,18 @@ min-width: 24em; } +#second > .blog_image { + padding-left: 8em; +} + +#third > .blog_image { + padding-left: 8em; +} + +#fourth > .blog_image { + padding-left: 7em; +} + .blog { display: grid; grid-template-columns: repeat(3, 2fr); diff --git a/blog/blog.html b/blog/blog.html index 8c1193f..ddd2886 100644 --- a/blog/blog.html +++ b/blog/blog.html @@ -33,38 +33,60 @@
-

Binary Conversions

+

Binary to Denary Conversions

-

Lorem ipsum dolor sit amet consectetur adipisicing elit. Iste mollitia repellat, possimus nesciunt aspernatur quisquam doloremque! Illo, debitis distinctio, nostrum voluptatum possimus minus odio quaerat quia fugit maiores porro. Lorem ipsum dolor sit amet, consectetur adipisicing elit. Cupiditate quas recusandae dolorum sunt porro vero, temporibus nesciunt cum, sint iure quis suscipit dignissimos maiores cumque debitis nihil, eveniet dolores nemo.

+

The image above is an example of a table we can use to convert 8-bit binary numbersreferred to as bytes to denary. + Each individual bit is put into each column in the same order as written. Any columns with a 1 should have their values added together. + The resulting value is the denary conversion. + + To convert from denary to binary, take the number you wish to convert and starting in the left most column try subtracting the number from + the one you wish to convert. If it can be done without producing a negative put a 1 in the column, if you cannot, put a 0. Once the remainder is 0, + add 0s to any remaining columns. The resulting number is the binary conversion. + + If you want to convert above 8-bit numbers, each column's denary value is calculated as 2 raised to the power of the column starting from the right and at 0. +

-

Blog Title

- -

Lorem ipsum dolor sit amet consectetur adipisicing elit. Iste mollitia repellat, possimus nesciunt aspernatur quisquam doloremque! Illo, debitis distinctio, nostrum voluptatum possimus minus odio quaerat quia fugit maiores porro. Lorem ipsum dolor sit amet, consectetur adipisicing elit. Cupiditate quas recusandae dolorum sunt porro vero, temporibus nesciunt cum, sint iure quis suscipit dignissimos maiores cumque debitis nihil, eveniet dolores nemo.

+

Binary Addition

+ +

In primary school we are taught to use long addition to sum numbers on paper. The practice relies on the concept of carrying digits to + other columns when the simple addition excedes 10. We can use the same technique to add binary numbers just instead of carrying when + exceding 10, we do this at 1. The best way to visualise this is with a couple of rules whenn carrying. First, when adding two 1s in a column, + the answer is 0 carry 1. Secondly, when adding three 1s in a column (from a previous carry), the answer is 1 carry 1.

-
-

Blog Title

- -

Lorem ipsum dolor sit amet consectetur adipisicing elit. Iste mollitia repellat, possimus nesciunt aspernatur quisquam doloremque! Illo, debitis distinctio, nostrum voluptatum possimus minus odio quaerat quia fugit maiores porro. Lorem ipsum dolor sit amet, consectetur adipisicing elit. Cupiditate quas recusandae dolorum sunt porro vero, temporibus nesciunt cum, sint iure quis suscipit dignissimos maiores cumque debitis nihil, eveniet dolores nemo.

+

Binary Subtraction Using 2's Complement

+ +

Subtraction in binary is a little hard as it is not as intuitive as the addition. To subtract two binary numbers we use a method known as + 2's complement. 2's complement is a way of expressing a binary number as a negative. After doing this conversion, you can just add the two + numbers and it will give the same answer as if the two numbers were subtracted in denary. To find 2's complement, you begin by inverting + each bit in the number (if the bit is a 0 it becomes 1, and vice versa) and then add 1.

-

Blog Title

- -

Lorem ipsum dolor sit amet consectetur adipisicing elit. Iste mollitia repellat, possimus nesciunt aspernatur quisquam doloremque! Illo, debitis distinctio, nostrum voluptatum possimus minus odio quaerat quia fugit maiores porro. Lorem ipsum dolor sit amet, consectetur adipisicing elit. Cupiditate quas recusandae dolorum sunt porro vero, temporibus nesciunt cum, sint iure quis suscipit dignissimos maiores cumque debitis nihil, eveniet dolores nemo.

+

Binary to Hexadecimal Conversions

+ +

Hexadecimal is another base system used in programming. Just like binary and denary hexadecimal creates a new column when it's + limit is reached (15). However, as the base system is higher than our standard system (denary), we use letters (A-f) to express the + numbers 10-15 so that they can be single digits.

+ +

To convert from binary to hexadecimal, split the 8-bit number into two 4 bit numbers and convert these numbers to denary. For any number + greater than 9 remember to use the letter assignation for hexadecimal. To convert from binary to denary, take the left digit and multiply + it by 16, then add the second digit. If you want to convert hexadecimal numbers with more than two digits to denary, you take each digit + and multiply it's denary value by 16 raised to the power of digits left to convert. The easiest way to convert from denary to hexadecimal + is by first converting to binary, and then hexadecimal.

-

Blog Title

+

Software Life Cycle

Lorem ipsum dolor sit amet consectetur adipisicing elit. Iste mollitia repellat, possimus nesciunt aspernatur quisquam doloremque! Illo, debitis distinctio, nostrum voluptatum possimus minus odio quaerat quia fugit maiores porro. Lorem ipsum dolor sit amet, consectetur adipisicing elit. Cupiditate quas recusandae dolorum sunt porro vero, temporibus nesciunt cum, sint iure quis suscipit dignissimos maiores cumque debitis nihil, eveniet dolores nemo.

@@ -72,7 +94,7 @@
-

Blog Title

+

Requirements Engineering- Why do we need it?

Lorem ipsum dolor sit amet consectetur adipisicing elit. Iste mollitia repellat, possimus nesciunt aspernatur quisquam doloremque! Illo, debitis distinctio, nostrum voluptatum possimus minus odio quaerat quia fugit maiores porro. Lorem ipsum dolor sit amet, consectetur adipisicing elit. Cupiditate quas recusandae dolorum sunt porro vero, temporibus nesciunt cum, sint iure quis suscipit dignissimos maiores cumque debitis nihil, eveniet dolores nemo.