init routes
This commit is contained in:
parent
2371f14c3c
commit
2b553d78e3
|
|
@ -2,4 +2,3 @@ __pycache__
|
|||
build
|
||||
barclays_credit_classifier.egg-info
|
||||
.env
|
||||
|
||||
|
|
|
|||
|
|
@ -0,0 +1,17 @@
|
|||
services:
|
||||
|
||||
mongo:
|
||||
image: mongo
|
||||
restart: always
|
||||
environment:
|
||||
MONGO_INITDB_ROOT_USERNAME: root
|
||||
MONGO_INITDB_ROOT_PASSWORD: example
|
||||
ports:
|
||||
- 27017:27017
|
||||
|
||||
server:
|
||||
build:
|
||||
context: .
|
||||
dockerfile: server.Dockerfile
|
||||
ports:
|
||||
- 12345:12345
|
||||
|
|
@ -0,0 +1,11 @@
|
|||
FROM python:3
|
||||
|
||||
WORKDIR $HOME/projects/uni/barclays_challenge_event_2024/
|
||||
|
||||
ADD setup.py ./
|
||||
ADD routes/ ./
|
||||
ADD model/ ./
|
||||
ADD main.py ./
|
||||
ADD db.py ./
|
||||
ADD credit_risk_dataset.csv ./
|
||||
RUN pip install .
|
||||
77
main.py
77
main.py
|
|
@ -1,77 +0,0 @@
|
|||
import models
|
||||
import pandas as pd
|
||||
import preprocessing as pp
|
||||
from sklearn.metrics import accuracy_score
|
||||
|
||||
# Load Data
|
||||
credit_risk = pd.read_csv("credit_risk_dataset.csv")
|
||||
|
||||
# Feature Addition
|
||||
|
||||
|
||||
# Feature Conversion
|
||||
|
||||
person_home_ownership_values = {
|
||||
"RENT": 1,
|
||||
"MORTGAGE": 2,
|
||||
"OWN": 3,
|
||||
"OTHER": 4,
|
||||
}
|
||||
loan_intent_values = {
|
||||
"EDUCATIONAL": 1,
|
||||
"MEDICAL": 2,
|
||||
"VENTURE": 3,
|
||||
"PERSONAL": 4,
|
||||
"DEBTCONSOLIDATION": 5
|
||||
}
|
||||
loan_grade_values = {
|
||||
"A": 1,
|
||||
"B": 2,
|
||||
"C": 3,
|
||||
"D": 4,
|
||||
"E": 5
|
||||
}
|
||||
cb_person_default_on_file_values = {
|
||||
"Y": 1,
|
||||
"N": 0,
|
||||
}
|
||||
|
||||
# Convert categorical column to a numerical column
|
||||
credit_risk["person_home_ownership"] = credit_risk["person_home_ownership"].map(person_home_ownership_values)
|
||||
credit_risk["loan_intent"] = credit_risk["loan_intent"].map(loan_intent_values)
|
||||
credit_risk["loan_grade"] = credit_risk["loan_grade"].map(loan_grade_values)
|
||||
credit_risk["cb_person_default_on_file"] = credit_risk["cb_person_default_on_file"].map(cb_person_default_on_file_values)
|
||||
|
||||
print("Feature Conversion Complete")
|
||||
|
||||
# Feature Removal
|
||||
# columns_for_removal = ["housing_median_age", "total_rooms", "total_bedrooms"]
|
||||
# for column in columns_for_removal:
|
||||
# housing.drop(column, axis=1, inplace=True)
|
||||
|
||||
# Preprocessing
|
||||
credit_risk = pp.impute_missing_values(credit_risk) # Handle missing values
|
||||
print("Missing Values handling Complete")
|
||||
# housing = pp.remove_outliers(housing) #Remove outliers
|
||||
|
||||
# Training and Testing Preperation
|
||||
training_features, training_target_value, test_features, test_target_value = pp.training_test_split(credit_risk, "loan_status") # Split the data into Training and Test sets
|
||||
print("Training and Test features split Complete")
|
||||
|
||||
# Normalise the data
|
||||
training_features, test_features = pp.normalise(training_features,
|
||||
test_features)
|
||||
print("Normalisation Complete")
|
||||
# Init Models
|
||||
rf_model = models.random_forest_classifier(training_features,
|
||||
training_target_value)
|
||||
print("Model Init Complete")
|
||||
|
||||
# Get Predictions
|
||||
rf_predictions = rf_model.predict(test_features)
|
||||
print("Predictions Complete")
|
||||
|
||||
# Compare Results
|
||||
accuracy = accuracy_score(test_target_value, rf_predictions)
|
||||
print(f"Accuracy: {accuracy}")
|
||||
print(rf_predictions)
|
||||
|
|
@ -0,0 +1,69 @@
|
|||
import pandas as pd
|
||||
import preprocessing as pp
|
||||
from sklearn.ensemble import RandomForestClassifier
|
||||
|
||||
# Feature Conversion Values
|
||||
categorical_columns = ["person_home_ownership",
|
||||
"loan_intent",
|
||||
"loan_grade",
|
||||
"cb_person_default_on_file"]
|
||||
person_home_ownership_values = {
|
||||
"RENT": 1,
|
||||
"MORTGAGE": 2,
|
||||
"OWN": 3,
|
||||
"OTHER": 4,
|
||||
}
|
||||
loan_intent_values = {
|
||||
"EDUCATIONAL": 1,
|
||||
"MEDICAL": 2,
|
||||
"VENTURE": 3,
|
||||
"PERSONAL": 4,
|
||||
"DEBTCONSOLIDATION": 5
|
||||
}
|
||||
loan_grade_values = {
|
||||
"A": 1,
|
||||
"B": 2,
|
||||
"C": 3,
|
||||
"D": 4,
|
||||
"E": 5
|
||||
}
|
||||
cb_person_default_on_file_values = {
|
||||
"Y": 1,
|
||||
"N": 0,
|
||||
}
|
||||
|
||||
|
||||
def get_default_predictor():
|
||||
data = pd.from_csv("credit_risk_dataset.csv")
|
||||
data = convert_categories(data)
|
||||
|
||||
# Imputation
|
||||
data = pp.impute_missing_values(data)
|
||||
|
||||
# Training and Testing Preperation
|
||||
train_features, train_target, test_features, test_target = pp.training_test_split(data, "loan_status")
|
||||
|
||||
# Normalise the data
|
||||
training_features, test_features = pp.normalise(train_features,
|
||||
test_features)
|
||||
# Init Models
|
||||
rf_model = random_forest_classifier(training_features,
|
||||
train_target)
|
||||
return rf_model
|
||||
|
||||
|
||||
def random_forest_classifier(training_features, training_target):
|
||||
model = RandomForestClassifier(max_features="log2",
|
||||
random_state=79,
|
||||
n_jobs=-1)
|
||||
return model
|
||||
|
||||
|
||||
def convert_categories(data):
|
||||
data["person_home_ownership"] = data["person_home_ownership"].map(
|
||||
person_home_ownership_values)
|
||||
data["loan_intent"] = data["loan_intent"].map(loan_intent_values)
|
||||
data["loan_grade"] = data["loan_grade"].map(loan_grade_values)
|
||||
data["cb_person_default_on_file"] = data["cb_person_default_on_file"].map(
|
||||
cb_person_default_on_file_values)
|
||||
return data
|
||||
|
|
@ -1,9 +0,0 @@
|
|||
from sklearn.ensemble import RandomForestClassifier
|
||||
|
||||
|
||||
def random_forest_classifier(training_features, training_target):
|
||||
model = RandomForestClassifier(max_features="log2",
|
||||
random_state=79,
|
||||
n_jobs=-1)
|
||||
model.fit(training_features, training_target)
|
||||
return model
|
||||
|
|
@ -0,0 +1,11 @@
|
|||
from flask import Blueprint
|
||||
|
||||
blueprint = Blueprint("user", __name__)
|
||||
|
||||
@blueprint.route("/api/user", methods=["POST"])
|
||||
|
||||
@blueprint.route("/api/user", methods=["PATCH"])
|
||||
|
||||
@blueprint.route("/api/user", methods=["GET"])
|
||||
|
||||
@blueprint.route("/api/user", methods=["OPTIONS"])
|
||||
|
|
@ -0,0 +1,15 @@
|
|||
from flask import Blueprint, request
|
||||
|
||||
blueprint = Blueprint("application", __name__)
|
||||
|
||||
@blueprint.route("/api/application/apply", methods=["POST"])
|
||||
def process_application():
|
||||
req = request.json
|
||||
|
||||
|
||||
@blueprint.route("/api/application", methods=["PATCH"])
|
||||
@blueprint.route("/api/application", methods=["OPTIONS"])
|
||||
|
||||
@blueprint.route("/api/application", methods=["GET"])
|
||||
def authenticate_user():
|
||||
req = request.json
|
||||
|
|
@ -0,0 +1,7 @@
|
|||
from flask import Blueprint
|
||||
|
||||
blueprint = Blueprint("user", __name__)
|
||||
|
||||
@blueprint.route("/api/user", methods=["GET"])
|
||||
|
||||
@blueprint.route("/api/user", methods=["OPTIONS"])
|
||||
|
|
@ -0,0 +1,13 @@
|
|||
from flask import Blueprint
|
||||
|
||||
blueprint = Blueprint("user", __name__)
|
||||
|
||||
@blueprint.route("/api/referral", methods=["POST"])
|
||||
|
||||
@blueprint.route("/api/referral", methods=["PATCH"])
|
||||
|
||||
@blueprint.route("/api/referral", methods=["DELETE"])
|
||||
|
||||
@blueprint.route("/api/referral", methods=["GET"])
|
||||
|
||||
@blueprint.route("/api/referral", methods=["OPTIONS"])
|
||||
|
|
@ -0,0 +1,15 @@
|
|||
from flask import Blueprint
|
||||
|
||||
blueprint = Blueprint("user", __name__)
|
||||
|
||||
@blueprint.route("/api/user", methods=["POST"])
|
||||
|
||||
@blueprint.route("/api/user", methods=["PUT"])
|
||||
|
||||
@blueprint.route("/api/user", methods=["PATCH"])
|
||||
|
||||
@blueprint.route("/api/user", methods=["DELETE"])
|
||||
|
||||
@blueprint.route("/api/user", methods=["GET"])
|
||||
|
||||
@blueprint.route("/api/user", methods=["OPTIONS"])
|
||||
15
setup.py
15
setup.py
|
|
@ -1,18 +1,17 @@
|
|||
from setuptools import setup, find_packages
|
||||
|
||||
setup(
|
||||
name="barclays_credit_classifier",
|
||||
name="Credit Assessment",
|
||||
version="1.0.0",
|
||||
description="Predicts whether someone will default on their loan. Uses the Credit Risk Dataset from Kaggle",
|
||||
author="r0r-5chach",
|
||||
description="ML Assisted Credit Assessment",
|
||||
author="r0r-5chach",
|
||||
author_email="r0r-5chach.xyz@proton.me",
|
||||
packages=find_packages(),
|
||||
install_requires=[
|
||||
"numpy",
|
||||
"scipy",
|
||||
"matplotlib",
|
||||
"pandas",
|
||||
"asyncio",
|
||||
"Flask",
|
||||
"scikit-learn",
|
||||
"seaborn"
|
||||
"pandas",
|
||||
"pymongo"
|
||||
]
|
||||
)
|
||||
|
|
|
|||
|
|
@ -1,66 +0,0 @@
|
|||
import matplotlib.pyplot as plt
|
||||
import seaborn as sns
|
||||
|
||||
def missing_value_pairwise_plots(data_frame, null_column, save=False):
|
||||
not_missing_data = data_frame.dropna()
|
||||
mising_data = data_frame[data_frame[null_column].isnull()]
|
||||
for column in data_frame.columns:
|
||||
if column != null_column:
|
||||
plt.figure()
|
||||
plt.title(f"Scatter Plot of {column} against {null_column}")
|
||||
plot_missing_values(column)
|
||||
plt.scatter(not_missing_data[column], not_missing_data[null_column], color=[[0.502, 0, 0.502, 0.4]], label="Existing Values")
|
||||
plt.xlabel(column)
|
||||
plt.ylabel(null_column)
|
||||
plt.legend()
|
||||
if save:
|
||||
plt.savefig(f"missing_values[{column}:{null_column}].png")
|
||||
else:
|
||||
plt.show()
|
||||
plt.close()
|
||||
|
||||
def plot_missing_values(column):
|
||||
plt.plot([], [], color="red", alpha=0.4, label="Missing Values")
|
||||
for value in column:
|
||||
plt.axvline(x=value, color="red", alpha=0.4)
|
||||
|
||||
def correlation_matrix(data_frame, save=False):
|
||||
matrix = data_frame.corr()
|
||||
plt.figure()
|
||||
sns.heatmap(matrix, annot=True)
|
||||
plt.title("Correlation Matrix of Existing Features")
|
||||
|
||||
if save:
|
||||
plt.savefig("correlation_matrix.png")
|
||||
else:
|
||||
plt.show()
|
||||
plt.close()
|
||||
|
||||
def imputation_plots(data_frame, imputed_data, null_column, columns, save=False):
|
||||
not_missing_data = data_frame.dropna()
|
||||
for column in columns:
|
||||
plt.figure()
|
||||
plt.scatter(imputed_data[column], imputed_data[null_column], color=[[0, 0.502, 0, 0.4]], label="Imputed Data")
|
||||
plt.scatter(not_missing_data[column], not_missing_data[null_column], colot=[[0.502, 0, 0.502, 0,4]], label="Original Data")
|
||||
plt.title(f"Scatter Plot of {column} against {null_column} after KNN(9) Imputation")
|
||||
plt.xlabel(column)
|
||||
plt.ylabel(column)
|
||||
plt.legend()
|
||||
if save:
|
||||
plt.savefig(f"imputation_results[{column}:{null_column}].png")
|
||||
else:
|
||||
plt.show()
|
||||
plt.close()
|
||||
|
||||
def outlier_box_plots(data_frame, save=False):
|
||||
for column in data_frame.columns:
|
||||
plt.figure()
|
||||
plt.title(f"Box Plot of {column}")
|
||||
plt.boxplot(data_frame[column])
|
||||
plt.ylabel(column)
|
||||
plt.xticks(rotation=45)
|
||||
if save:
|
||||
plt.savefig(f"outlier_box_plot[{column}].png")
|
||||
else:
|
||||
plt.show()
|
||||
plt.close()
|
||||
Loading…
Reference in New Issue