commit 535558f12801d935aa8d3d3e6a4637286ea04852 Author: r0r-5chach Date: Sat May 18 16:22:07 2024 +0100 transfer_learning diff --git a/brief.pdf b/brief.pdf new file mode 100644 index 0000000..a420106 Binary files /dev/null and b/brief.pdf differ diff --git a/crop-classifier-callbacks.keras b/crop-classifier-callbacks.keras new file mode 100644 index 0000000..55f0b9b Binary files /dev/null and b/crop-classifier-callbacks.keras differ diff --git a/main.py b/main.py new file mode 100644 index 0000000..67cb787 --- /dev/null +++ b/main.py @@ -0,0 +1,147 @@ +import numpy as np +import matplotlib.pyplot as plt +import tensorflow as tf +import os + + +#Import Data +PATH = os.path.join(os.getcwd(), "crop-data") + +training_data = os.path.join(PATH, "train") +validation_data = os.path.join(PATH, "valid") +test_data = os.path.join(PATH, "test") + +BATCH_SIZE = 64 +IMG_SIZE = (160,160) + +training_data = tf.keras.utils.image_dataset_from_directory(training_data, + shuffle=True, + batch_size=BATCH_SIZE, + image_size=IMG_SIZE) +validation_data = tf.keras.utils.image_dataset_from_directory(validation_data, + shuffle=True, + batch_size=BATCH_SIZE, + image_size=IMG_SIZE) + +test_data = tf.keras.utils.image_dataset_from_directory(test_data, + shuffle=True, + batch_size=BATCH_SIZE, + image_size=IMG_SIZE) + +class_names = training_data.class_names + +#View Data +plt.figure(figsize=(10,10)) +for images, labels in training_data.take(1): + for i in range(9): + ax = plt.subplot(3, 3, i+1) + plt.imshow(images[i].numpy().astype("uint8")) + plt.title(class_names[labels[i]]) + plt.axis("off") +plt.show() + + +#Init Prefetching +AUTOTUNE = tf.data.AUTOTUNE +training_data = training_data.prefetch(buffer_size=AUTOTUNE) +validation_data = validation_data.prefetch(buffer_size=AUTOTUNE) +test_data = test_data.prefetch(buffer_size=AUTOTUNE) + + +#Data Augmentation +data_augmentation = tf.keras.Sequential([ + tf.keras.layers.RandomFlip('horisontal'), + tf.keras.layers.RandomRotation(0.2) + ]) + +#Rescale Pixel Values +preprocess_input = tf.keras.applications.mobilenet_v3.preprocess_input + +rescale = tf.keras.layers.Rescaling(1./127.5, offset=-1) + +#Create Base Model From MobileNetV3 +IMG_SHAPE = IMG_SIZE + (3,) +base_model = tf.keras.applications.MobileNetV3Large( + input_shape=IMG_SHAPE, + include_top=False, + weights="imagenet" + ) + +image_batch, label_batch = next(iter(training_data)) +feature_batch = base_model(image_batch) + +base_model.trainable = False + + +#View Base Model +base_model.summary() + +#Add Classification Header + + +global_avg_layer = tf.keras.layers.GlobalAveragePooling2D() +feature_batch_avg = global_avg_layer(feature_batch) + +prediction_layer = tf.keras.layers.Dense(38, activation="softmax") +predication_batch = prediction_layer(feature_batch_avg) + +inputs = tf.keras.Input(shape=(160,160,3)) +x = data_augmentation(inputs) +x = preprocess_input(x) +x = base_model(x, training=False) +x = global_avg_layer(x) +x = tf.keras.layers.Dropout(0.2)(x) +outputs = prediction_layer(x) + +model = tf.keras.Model(inputs, outputs) + +#View Model with Classification Head +model.summary() + + +#Compile the Model +base_learning_rate = 0.0001 + +training_data = training_data.map(lambda x,y: (x, tf.one_hot(y,38))) +validation_data = validation_data.map(lambda x,y: (x, tf.one_hot(y,38))) + + + +optimizer = tf.keras.optimizers.Adam(learning_rate=base_learning_rate) +loss = tf.keras.losses.CategoricalCrossentropy() +metrics = [tf.keras.metrics.CategoricalAccuracy()] + + +phy_dev = tf.config.list_physical_devices("GPU") +for gpu in phy_dev: + tf.config.experimental.set_memory_growth(gpu, True) + +model.compile(optimizer=optimizer, loss=loss, metrics=metrics) + +#Train the Model +initial_epochs = 50 + +loss0, accuracy0 = model.evaluate(validation_data) + +print(f"initial loss: {loss0}") +print(f"initial accuracy: {accuracy0}") + +lr_schedule = tf.keras.callbacks.ReduceLROnPlateau( + monitor="val_loss", + factor=0.1, + patience=5, + min_lr=1e-6 + ) + +earky_stopping = tf.keras.callbacks.EarlyStopping( + monitor="val_loss", + patience=10, + restore_best_weights=True + ) + +history = model.fit(training_data, + epochs=initial_epochs, + validation_data=validation_data, + callbacks=[lr_schedule]) + +model.save("crop-classifier-callbacks.keras") diff --git a/report.odt b/report.odt new file mode 100644 index 0000000..b620efc Binary files /dev/null and b/report.odt differ