import numpy as np import tensorflow as tf import os #Import Data PATH = os.path.join(os.getcwd(), "crop-data") test_data = os.path.join(PATH, "test") test_data_32 = tf.keras.utils.image_dataset_from_directory(test_data, shuffle=True, batch_size=32, image_size=(160,160)) test_data_64 = tf.keras.utils.image_dataset_from_directory(test_data, shuffle=True, batch_size=64, image_size=(160,160)) AUTOTUNE = tf.data.AUTOTUNE test_data_32 = test_data_32.prefetch(buffer_size=AUTOTUNE) test_data_64 = test_data_64.prefetch(buffer_size=AUTOTUNE) test_data_32 = test_data_32.map(lambda x,y: (x, tf.one_hot(y,38))) test_data_64 = test_data_64.map(lambda x,y: (x, tf.one_hot(y,38))) model1 = tf.keras.models.load_model("crop-classifier.keras") model2 = tf.keras.models.load_model("crop-classifier-64-batch.keras") model3 = tf.keras.models.load_model("crop-classifier-callbacks.keras") result = model1.evaluate(test_data_32) print(f"Test Loss: {result[0]}") print(f"Test Accuracy: {result[1]}") result = model2.evaluate(test_data_64) print(f"Test Loss: {result[0]}") print(f"Test Accuracy: {result[1]}") result = model3.evaluate(test_data_64) print(f"Test Loss: {result[0]}") print(f"Test Accuracy: {result[1]}")