137 lines
4.2 KiB
Python
137 lines
4.2 KiB
Python
|
|
import tensorflow as tf
|
||
|
|
import tensorflow.keras as tfk
|
||
|
|
import os
|
||
|
|
|
||
|
|
|
||
|
|
# Parameters
|
||
|
|
DATA_DIR = os.path.join(os.getcwd(), "data")
|
||
|
|
IMG_SIZE = (224, 224)
|
||
|
|
IMG_SHAPE = IMG_SIZE + (3,)
|
||
|
|
BATCH_SIZE = 64
|
||
|
|
AUTOTUNE = tf.data.AUTOTUNE
|
||
|
|
BASE_LEARNING_RATE = 0.0001
|
||
|
|
CLASSES = 2
|
||
|
|
|
||
|
|
|
||
|
|
# Import Data
|
||
|
|
training_path = os.path.join(DATA_DIR, "train")
|
||
|
|
test_path = os.path.join(DATA_DIR, "test")
|
||
|
|
|
||
|
|
|
||
|
|
training_data = tfk.utils.image_dataset_from_directory(training_path,
|
||
|
|
shuffle=True,
|
||
|
|
batch_size=BATCH_SIZE,
|
||
|
|
image_size=IMG_SIZE,
|
||
|
|
validation_split=0.2,
|
||
|
|
subset="training",
|
||
|
|
seed=1234)
|
||
|
|
validation_data = tfk.utils.image_dataset_from_directory(training_path,
|
||
|
|
shuffle=True,
|
||
|
|
batch_size=BATCH_SIZE,
|
||
|
|
image_size=IMG_SIZE,
|
||
|
|
validation_split=0.2,
|
||
|
|
subset="validation",
|
||
|
|
seed=1234)
|
||
|
|
test_data = tfk.utils.image_dataset_from_directory(test_path,
|
||
|
|
shuffle=True,
|
||
|
|
batch_size=BATCH_SIZE,
|
||
|
|
image_size=IMG_SIZE)
|
||
|
|
|
||
|
|
|
||
|
|
# Init Prefetching
|
||
|
|
training_data = training_data.prefetch(buffer_size=AUTOTUNE)
|
||
|
|
validation_data = validation_data.prefetch(buffer_size=AUTOTUNE)
|
||
|
|
test_data = test_data.prefetch(buffer_size=AUTOTUNE)
|
||
|
|
|
||
|
|
|
||
|
|
# Data Augmentation Layer
|
||
|
|
data_augmentation = tf.keras.Sequential([
|
||
|
|
tf.keras.layers.RandomFlip('horizontal'),
|
||
|
|
tf.keras.layers.RandomRotation(0.2)
|
||
|
|
])
|
||
|
|
|
||
|
|
|
||
|
|
# Create Base Model From MobileNetV3Large
|
||
|
|
base_model = tf.keras.applications.MobileNetV3Large(
|
||
|
|
input_shape=IMG_SHAPE,
|
||
|
|
include_top=False,
|
||
|
|
weights="imagenet"
|
||
|
|
)
|
||
|
|
|
||
|
|
image_batch, label_batch = next(iter(training_data))
|
||
|
|
feature_batch = base_model(image_batch)
|
||
|
|
|
||
|
|
base_model.trainable = False
|
||
|
|
|
||
|
|
|
||
|
|
# Add Classification Header
|
||
|
|
global_avg_layer = tf.keras.layers.GlobalAveragePooling2D()
|
||
|
|
feature_batch_avg = global_avg_layer(feature_batch)
|
||
|
|
|
||
|
|
prediction_layer = tf.keras.layers.Dense(CLASSES, activation="softmax")
|
||
|
|
predication_batch = prediction_layer(feature_batch_avg)
|
||
|
|
|
||
|
|
inputs = tf.keras.Input(shape=IMG_SHAPE)
|
||
|
|
x = data_augmentation(inputs)
|
||
|
|
x = base_model(x, training=False)
|
||
|
|
x = global_avg_layer(x)
|
||
|
|
x = tf.keras.layers.Dropout(0.2)(x)
|
||
|
|
outputs = prediction_layer(x)
|
||
|
|
|
||
|
|
model = tf.keras.Model(inputs, outputs)
|
||
|
|
|
||
|
|
|
||
|
|
# Hotencode Data
|
||
|
|
training_data = training_data.map(lambda x, y: (x, tf.one_hot(y, CLASSES)))
|
||
|
|
validation_data = validation_data.map(lambda x, y: (x, tf.one_hot(y, CLASSES)))
|
||
|
|
test_data = test_data.map(lambda x, y: (x, tf.one_hot(y, CLASSES)))
|
||
|
|
|
||
|
|
|
||
|
|
# Compile Model
|
||
|
|
optimizer = tf.keras.optimizers.Adam(learning_rate=BASE_LEARNING_RATE)
|
||
|
|
loss = tf.keras.losses.CategoricalCrossentropy()
|
||
|
|
metrics = [tf.keras.metrics.CategoricalAccuracy()]
|
||
|
|
|
||
|
|
model.compile(optimizer=optimizer, loss=loss, metrics=metrics)
|
||
|
|
|
||
|
|
|
||
|
|
# Train the Model
|
||
|
|
initial_epochs = 50
|
||
|
|
|
||
|
|
loss0, accuracy0 = model.evaluate(validation_data)
|
||
|
|
|
||
|
|
print(f"initial loss: {loss0}")
|
||
|
|
print(f"initial accuracy: {accuracy0}")
|
||
|
|
|
||
|
|
lr_schedule = tf.keras.callbacks.ReduceLROnPlateau(
|
||
|
|
monitor="val_loss",
|
||
|
|
factor=0.1,
|
||
|
|
patience=5,
|
||
|
|
min_lr=1e-6
|
||
|
|
)
|
||
|
|
|
||
|
|
early_stopping = tf.keras.callbacks.EarlyStopping(
|
||
|
|
monitor="val_loss",
|
||
|
|
patience=10,
|
||
|
|
restore_best_weights=True
|
||
|
|
)
|
||
|
|
|
||
|
|
history = model.fit(training_data,
|
||
|
|
epochs=initial_epochs,
|
||
|
|
validation_data=validation_data,
|
||
|
|
callbacks=[lr_schedule, early_stopping])
|
||
|
|
|
||
|
|
|
||
|
|
# Evaluate Model
|
||
|
|
results = model.evaluate(validation_data)
|
||
|
|
print(f"Validation Loss: {results[0]}")
|
||
|
|
print(f"Validation Accuracy: {results[1]}")
|
||
|
|
|
||
|
|
results = model.evaluate(test_data)
|
||
|
|
print(f"Test Loss: {results[0]}")
|
||
|
|
print(f"Test Accuracy: {results[1]}")
|
||
|
|
|
||
|
|
|
||
|
|
# Save Model
|
||
|
|
model.save("models/mobilenet_v3.keras")
|