compiled models
This commit is contained in:
parent
be85eaf018
commit
abbe057c94
|
|
@ -0,0 +1 @@
|
|||
3.11.1
|
||||
|
|
@ -1,136 +1,34 @@
|
|||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
import tensorflow as tf
|
||||
import os
|
||||
from tflite_model_maker import model_spec
|
||||
from tflite_model_maker import image_classifier
|
||||
from tflite_model_maker.config import ExportFormat
|
||||
from tflite_model_maker.config import QuantizationConfig
|
||||
from tflite_model_maker.image_classifier import DataLoader
|
||||
|
||||
DIR = "data/binary-classification"
|
||||
DATA = "data/binary-classification/"
|
||||
MODELS = ["mobilenet_v2", "efficientnet_lite3", "efficientnet_lite4"]
|
||||
|
||||
#Import Data
|
||||
PATH = os.path.join(os.getcwd(), DIR)
|
||||
|
||||
training_data = os.path.join(PATH, "train")
|
||||
validation_data = os.path.join(PATH, "valid")
|
||||
test_data = os.path.join(PATH, "test")
|
||||
|
||||
BATCH_SIZE = 64
|
||||
IMG_SIZE = (224,224)
|
||||
|
||||
#TODO: Import data from both directories, then resplit into test, train, and validation
|
||||
|
||||
print(f"Train: {len(training_data)}\nValid: {len(validation_data)}\nTest: {len(test_data)}")
|
||||
train_data = DataLoader.from_folder(DATA + "train")
|
||||
test_data = DataLoader.from_folder(DATA + "test")
|
||||
train_data, valid_data = train_data.split(0.8)
|
||||
|
||||
|
||||
#View Data
|
||||
plt.figure(figsize=(10,10))
|
||||
for images, labels in training_data.take(1):
|
||||
for i in range(9):
|
||||
ax = plt.subplot(3, 3, i+1)
|
||||
plt.imshow(images[i].numpy().astype("uint8"))
|
||||
plt.title(class_names[labels[i]])
|
||||
plt.axis("off")
|
||||
plt.show()
|
||||
|
||||
|
||||
#Init Prefetching
|
||||
AUTOTUNE = tf.data.AUTOTUNE
|
||||
training_data = training_data.prefetch(buffer_size=AUTOTUNE)
|
||||
validation_data = validation_data.prefetch(buffer_size=AUTOTUNE)
|
||||
test_data = test_data.prefetch(buffer_size=AUTOTUNE)
|
||||
|
||||
|
||||
#Data Augmentation
|
||||
data_augmentation = tf.keras.Sequential([
|
||||
tf.keras.layers.RandomFlip('horizontal'),
|
||||
tf.keras.layers.RandomRotation(0.2)
|
||||
])
|
||||
|
||||
#Create Base Model From MobileNetV3
|
||||
IMG_SHAPE = IMG_SIZE + (3,)
|
||||
base_model = tf.keras.applications.MobileNetV3Large(
|
||||
input_shape=IMG_SHAPE,
|
||||
include_top=False,
|
||||
weights="imagenet"
|
||||
)
|
||||
|
||||
image_batch, label_batch = next(iter(training_data))
|
||||
feature_batch = base_model(image_batch)
|
||||
|
||||
base_model.trainable = False
|
||||
|
||||
|
||||
#View Base Model
|
||||
base_model.summary()
|
||||
|
||||
#Add Classification Header
|
||||
|
||||
|
||||
global_avg_layer = tf.keras.layers.GlobalAveragePooling2D()
|
||||
feature_batch_avg = global_avg_layer(feature_batch)
|
||||
|
||||
prediction_layer = tf.keras.layers.Dense(38, activation="softmax")
|
||||
predication_batch = prediction_layer(feature_batch_avg)
|
||||
|
||||
inputs = tf.keras.Input(shape=(160,160,3))
|
||||
x = data_augmentation(inputs)
|
||||
x = base_model(x, training=False)
|
||||
x = global_avg_layer(x)
|
||||
x = tf.keras.layers.Dropout(0.2)(x)
|
||||
outputs = prediction_layer(x)
|
||||
|
||||
model = tf.keras.Model(inputs, outputs)
|
||||
|
||||
#View Model with Classification Head
|
||||
for i in range(len(MODELS)):
|
||||
model = image_classifier.create(train_data,
|
||||
validation_data=valid_data,
|
||||
model_spec=model_spec.get(MODELS[i]),
|
||||
epochs=50,
|
||||
learning_rate=0.0001,
|
||||
dropout_rate=0.2,
|
||||
batch_size=64,
|
||||
use_augmentation=True)
|
||||
model.summary()
|
||||
|
||||
loss, accuracy = model.evaluate(test_data)
|
||||
|
||||
#Compile the Model
|
||||
base_learning_rate = 0.0001
|
||||
config = QuantizationConfig.for_float16()
|
||||
filename = f"dermy-binary-classification-{MODELS[i]}.tflite"
|
||||
|
||||
training_data = training_data.map(lambda x,y: (x, tf.one_hot(y,38)))
|
||||
validation_data = validation_data.map(lambda x,y: (x, tf.one_hot(y,38)))
|
||||
test_data = test_data.map(lambda x,y: (x, tf.one_hot(y,38)))
|
||||
|
||||
optimizer = tf.keras.optimizers.Adam(learning_rate=base_learning_rate)
|
||||
loss = tf.keras.losses.CategoricalCrossentropy()
|
||||
metrics = [tf.keras.metrics.CategoricalAccuracy()]
|
||||
|
||||
|
||||
|
||||
model.compile(optimizer=optimizer, loss=loss, metrics=metrics)
|
||||
|
||||
#Train the Model
|
||||
initial_epochs = 50
|
||||
|
||||
loss0, accuracy0 = model.evaluate(validation_data)
|
||||
|
||||
print(f"initial loss: {loss0}")
|
||||
print(f"initial accuracy: {accuracy0}")
|
||||
|
||||
lr_schedule = tf.keras.callbacks.ReduceLROnPlateau(
|
||||
monitor="val_loss",
|
||||
factor=0.1,
|
||||
patience=5,
|
||||
min_lr=1e-6
|
||||
)
|
||||
|
||||
early_stopping = tf.keras.callbacks.EarlyStopping(
|
||||
monitor="val_loss",
|
||||
patience=10,
|
||||
restore_best_weights=True
|
||||
)
|
||||
|
||||
history = model.fit(training_data,
|
||||
epochs=initial_epochs,
|
||||
validation_data=validation_data,
|
||||
callbacks=[lr_schedule, early_stopping])
|
||||
|
||||
model.save("crop-classifier-better-test.keras")
|
||||
|
||||
#Evaluate Model
|
||||
results = model.evaluate(validation_data)
|
||||
print(f"Validation Loss: {results[0]}")
|
||||
print(f"Validation Accuracy: {results[1]}")
|
||||
|
||||
results = model.evaluate(test_data)
|
||||
print(f"Test Loss: {results[0]}")
|
||||
print(f"Test Accuracy: {results[1]}")
|
||||
model.export(export_dir="./models",
|
||||
export_format=ExportFormat.TFLITE,
|
||||
tflite_filename=filename,
|
||||
quantization_config=config)
|
||||
|
|
|
|||
|
|
@ -0,0 +1,17 @@
|
|||
import tensorflow as tf
|
||||
|
||||
MODEL = "models/dermy-binary-classifier"
|
||||
|
||||
|
||||
model = tf.keras.models.load_model(MODEL + ".keras")
|
||||
|
||||
converter = tf.lite.TFLiteConverter.from_keras_model(model)
|
||||
|
||||
converter.allow_custom_ops = True
|
||||
converter.experimental_enable_resource_variables = True
|
||||
converter.experimental_new_converter = True
|
||||
|
||||
converted_model = converter.convert()
|
||||
|
||||
with open(MODEL + ".tflite", "wb") as file:
|
||||
file.write(converted_model)
|
||||
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
|
|
@ -1,20 +0,0 @@
|
|||
[build-system]
|
||||
requires = ["setuptools", "wheel"]
|
||||
build-backend = "setuptools.build_meta"
|
||||
|
||||
[project]
|
||||
name = "dermy-model"
|
||||
version = "0.1.0"
|
||||
description = "A Image Classification Model for classifying Moles"
|
||||
authors = [{ name = "r0r5chach", email = "r0r-5chach.xyz@proton.me" }]
|
||||
readme = "README.md"
|
||||
license = { file = "LICENSE" }
|
||||
dependencies = [
|
||||
"matplotlib",
|
||||
"numpy",
|
||||
"tensorflow",
|
||||
]
|
||||
|
||||
[too.setuptools]
|
||||
packages = ["dermy-model"]
|
||||
include_package_data = true
|
||||
|
|
@ -0,0 +1,29 @@
|
|||
tf-models-official==2.3.0
|
||||
# tensorflow-hub is to load Hub model. Specific version is required by TFJS.
|
||||
tensorflow-hub>=0.7.0,<0.10; python_version < "3"
|
||||
tensorflow-hub>=0.7.0,<0.13; python_version >= "3"
|
||||
numpy>=1.17.3,<1.23.4
|
||||
pillow>=7.0.0
|
||||
sentencepiece>=0.1.91
|
||||
tensorflow-datasets>=2.1.0
|
||||
fire>=0.3.1
|
||||
flatbuffers>=2.0
|
||||
absl-py>=0.10.0
|
||||
urllib3!=1.25.0,!=1.25.1,<1.26,>=1.21.1
|
||||
tflite-support>=0.4.2
|
||||
tensorflowjs>=2.4.0,<3.19.0
|
||||
tensorflow>=2.6.0
|
||||
# b/196287362: This Numba + Librosa combination works for numpy 1.19, introduced
|
||||
# by TensorFlow 2.6.0.
|
||||
numba>=0.53
|
||||
librosa==0.8.1
|
||||
lxml>=4.6.1
|
||||
PyYAML>=5.1
|
||||
# The following are the requirements of efficientdet.
|
||||
matplotlib>=3.0.3,<3.5.0
|
||||
six>=1.12.0
|
||||
tensorflow-addons>=0.11.2
|
||||
neural-structured-learning>=1.3.1
|
||||
tensorflow-model-optimization>=0.5
|
||||
Cython>=0.29.13
|
||||
scann==1.2.6
|
||||
Loading…
Reference in New Issue