compiled models

This commit is contained in:
Joshua Perry 2024-06-03 17:27:04 +01:00
parent be85eaf018
commit abbe057c94
12 changed files with 74 additions and 149 deletions

1
.python-version Normal file
View File

@ -0,0 +1 @@
3.11.1

0
LICENSE Normal file
View File

0
README.md Normal file
View File

View File

@ -1,136 +1,34 @@
import numpy as np
import matplotlib.pyplot as plt
import tensorflow as tf
import os
from tflite_model_maker import model_spec
from tflite_model_maker import image_classifier
from tflite_model_maker.config import ExportFormat
from tflite_model_maker.config import QuantizationConfig
from tflite_model_maker.image_classifier import DataLoader
DIR = "data/binary-classification"
DATA = "data/binary-classification/"
MODELS = ["mobilenet_v2", "efficientnet_lite3", "efficientnet_lite4"]
#Import Data
PATH = os.path.join(os.getcwd(), DIR)
training_data = os.path.join(PATH, "train")
validation_data = os.path.join(PATH, "valid")
test_data = os.path.join(PATH, "test")
BATCH_SIZE = 64
IMG_SIZE = (224,224)
#TODO: Import data from both directories, then resplit into test, train, and validation
print(f"Train: {len(training_data)}\nValid: {len(validation_data)}\nTest: {len(test_data)}")
train_data = DataLoader.from_folder(DATA + "train")
test_data = DataLoader.from_folder(DATA + "test")
train_data, valid_data = train_data.split(0.8)
#View Data
plt.figure(figsize=(10,10))
for images, labels in training_data.take(1):
for i in range(9):
ax = plt.subplot(3, 3, i+1)
plt.imshow(images[i].numpy().astype("uint8"))
plt.title(class_names[labels[i]])
plt.axis("off")
plt.show()
#Init Prefetching
AUTOTUNE = tf.data.AUTOTUNE
training_data = training_data.prefetch(buffer_size=AUTOTUNE)
validation_data = validation_data.prefetch(buffer_size=AUTOTUNE)
test_data = test_data.prefetch(buffer_size=AUTOTUNE)
#Data Augmentation
data_augmentation = tf.keras.Sequential([
tf.keras.layers.RandomFlip('horizontal'),
tf.keras.layers.RandomRotation(0.2)
])
#Create Base Model From MobileNetV3
IMG_SHAPE = IMG_SIZE + (3,)
base_model = tf.keras.applications.MobileNetV3Large(
input_shape=IMG_SHAPE,
include_top=False,
weights="imagenet"
)
image_batch, label_batch = next(iter(training_data))
feature_batch = base_model(image_batch)
base_model.trainable = False
#View Base Model
base_model.summary()
#Add Classification Header
global_avg_layer = tf.keras.layers.GlobalAveragePooling2D()
feature_batch_avg = global_avg_layer(feature_batch)
prediction_layer = tf.keras.layers.Dense(38, activation="softmax")
predication_batch = prediction_layer(feature_batch_avg)
inputs = tf.keras.Input(shape=(160,160,3))
x = data_augmentation(inputs)
x = base_model(x, training=False)
x = global_avg_layer(x)
x = tf.keras.layers.Dropout(0.2)(x)
outputs = prediction_layer(x)
model = tf.keras.Model(inputs, outputs)
#View Model with Classification Head
for i in range(len(MODELS)):
model = image_classifier.create(train_data,
validation_data=valid_data,
model_spec=model_spec.get(MODELS[i]),
epochs=50,
learning_rate=0.0001,
dropout_rate=0.2,
batch_size=64,
use_augmentation=True)
model.summary()
loss, accuracy = model.evaluate(test_data)
#Compile the Model
base_learning_rate = 0.0001
config = QuantizationConfig.for_float16()
filename = f"dermy-binary-classification-{MODELS[i]}.tflite"
training_data = training_data.map(lambda x,y: (x, tf.one_hot(y,38)))
validation_data = validation_data.map(lambda x,y: (x, tf.one_hot(y,38)))
test_data = test_data.map(lambda x,y: (x, tf.one_hot(y,38)))
optimizer = tf.keras.optimizers.Adam(learning_rate=base_learning_rate)
loss = tf.keras.losses.CategoricalCrossentropy()
metrics = [tf.keras.metrics.CategoricalAccuracy()]
model.compile(optimizer=optimizer, loss=loss, metrics=metrics)
#Train the Model
initial_epochs = 50
loss0, accuracy0 = model.evaluate(validation_data)
print(f"initial loss: {loss0}")
print(f"initial accuracy: {accuracy0}")
lr_schedule = tf.keras.callbacks.ReduceLROnPlateau(
monitor="val_loss",
factor=0.1,
patience=5,
min_lr=1e-6
)
early_stopping = tf.keras.callbacks.EarlyStopping(
monitor="val_loss",
patience=10,
restore_best_weights=True
)
history = model.fit(training_data,
epochs=initial_epochs,
validation_data=validation_data,
callbacks=[lr_schedule, early_stopping])
model.save("crop-classifier-better-test.keras")
#Evaluate Model
results = model.evaluate(validation_data)
print(f"Validation Loss: {results[0]}")
print(f"Validation Accuracy: {results[1]}")
results = model.evaluate(test_data)
print(f"Test Loss: {results[0]}")
print(f"Test Accuracy: {results[1]}")
model.export(export_dir="./models",
export_format=ExportFormat.TFLITE,
tflite_filename=filename,
quantization_config=config)

17
convert.py Normal file
View File

@ -0,0 +1,17 @@
import tensorflow as tf
MODEL = "models/dermy-binary-classifier"
model = tf.keras.models.load_model(MODEL + ".keras")
converter = tf.lite.TFLiteConverter.from_keras_model(model)
converter.allow_custom_ops = True
converter.experimental_enable_resource_variables = True
converter.experimental_new_converter = True
converted_model = converter.convert()
with open(MODEL + ".tflite", "wb") as file:
file.write(converted_model)

Binary file not shown.

Binary file not shown.

Binary file not shown.

View File

@ -1,20 +0,0 @@
[build-system]
requires = ["setuptools", "wheel"]
build-backend = "setuptools.build_meta"
[project]
name = "dermy-model"
version = "0.1.0"
description = "A Image Classification Model for classifying Moles"
authors = [{ name = "r0r5chach", email = "r0r-5chach.xyz@proton.me" }]
readme = "README.md"
license = { file = "LICENSE" }
dependencies = [
"matplotlib",
"numpy",
"tensorflow",
]
[too.setuptools]
packages = ["dermy-model"]
include_package_data = true

29
requirements.txt Normal file
View File

@ -0,0 +1,29 @@
tf-models-official==2.3.0
# tensorflow-hub is to load Hub model. Specific version is required by TFJS.
tensorflow-hub>=0.7.0,<0.10; python_version < "3"
tensorflow-hub>=0.7.0,<0.13; python_version >= "3"
numpy>=1.17.3,<1.23.4
pillow>=7.0.0
sentencepiece>=0.1.91
tensorflow-datasets>=2.1.0
fire>=0.3.1
flatbuffers>=2.0
absl-py>=0.10.0
urllib3!=1.25.0,!=1.25.1,<1.26,>=1.21.1
tflite-support>=0.4.2
tensorflowjs>=2.4.0,<3.19.0
tensorflow>=2.6.0
# b/196287362: This Numba + Librosa combination works for numpy 1.19, introduced
# by TensorFlow 2.6.0.
numba>=0.53
librosa==0.8.1
lxml>=4.6.1
PyYAML>=5.1
# The following are the requirements of efficientdet.
matplotlib>=3.0.3,<3.5.0
six>=1.12.0
tensorflow-addons>=0.11.2
neural-structured-learning>=1.3.1
tensorflow-model-optimization>=0.5
Cython>=0.29.13
scann==1.2.6