init
This commit is contained in:
commit
be85eaf018
|
|
@ -0,0 +1,3 @@
|
|||
.env/
|
||||
dermy_model.egg-info/
|
||||
data/
|
||||
|
|
@ -0,0 +1,136 @@
|
|||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
import tensorflow as tf
|
||||
import os
|
||||
|
||||
DIR = "data/binary-classification"
|
||||
|
||||
#Import Data
|
||||
PATH = os.path.join(os.getcwd(), DIR)
|
||||
|
||||
training_data = os.path.join(PATH, "train")
|
||||
validation_data = os.path.join(PATH, "valid")
|
||||
test_data = os.path.join(PATH, "test")
|
||||
|
||||
BATCH_SIZE = 64
|
||||
IMG_SIZE = (224,224)
|
||||
|
||||
#TODO: Import data from both directories, then resplit into test, train, and validation
|
||||
|
||||
print(f"Train: {len(training_data)}\nValid: {len(validation_data)}\nTest: {len(test_data)}")
|
||||
|
||||
|
||||
#View Data
|
||||
plt.figure(figsize=(10,10))
|
||||
for images, labels in training_data.take(1):
|
||||
for i in range(9):
|
||||
ax = plt.subplot(3, 3, i+1)
|
||||
plt.imshow(images[i].numpy().astype("uint8"))
|
||||
plt.title(class_names[labels[i]])
|
||||
plt.axis("off")
|
||||
plt.show()
|
||||
|
||||
|
||||
#Init Prefetching
|
||||
AUTOTUNE = tf.data.AUTOTUNE
|
||||
training_data = training_data.prefetch(buffer_size=AUTOTUNE)
|
||||
validation_data = validation_data.prefetch(buffer_size=AUTOTUNE)
|
||||
test_data = test_data.prefetch(buffer_size=AUTOTUNE)
|
||||
|
||||
|
||||
#Data Augmentation
|
||||
data_augmentation = tf.keras.Sequential([
|
||||
tf.keras.layers.RandomFlip('horizontal'),
|
||||
tf.keras.layers.RandomRotation(0.2)
|
||||
])
|
||||
|
||||
#Create Base Model From MobileNetV3
|
||||
IMG_SHAPE = IMG_SIZE + (3,)
|
||||
base_model = tf.keras.applications.MobileNetV3Large(
|
||||
input_shape=IMG_SHAPE,
|
||||
include_top=False,
|
||||
weights="imagenet"
|
||||
)
|
||||
|
||||
image_batch, label_batch = next(iter(training_data))
|
||||
feature_batch = base_model(image_batch)
|
||||
|
||||
base_model.trainable = False
|
||||
|
||||
|
||||
#View Base Model
|
||||
base_model.summary()
|
||||
|
||||
#Add Classification Header
|
||||
|
||||
|
||||
global_avg_layer = tf.keras.layers.GlobalAveragePooling2D()
|
||||
feature_batch_avg = global_avg_layer(feature_batch)
|
||||
|
||||
prediction_layer = tf.keras.layers.Dense(38, activation="softmax")
|
||||
predication_batch = prediction_layer(feature_batch_avg)
|
||||
|
||||
inputs = tf.keras.Input(shape=(160,160,3))
|
||||
x = data_augmentation(inputs)
|
||||
x = base_model(x, training=False)
|
||||
x = global_avg_layer(x)
|
||||
x = tf.keras.layers.Dropout(0.2)(x)
|
||||
outputs = prediction_layer(x)
|
||||
|
||||
model = tf.keras.Model(inputs, outputs)
|
||||
|
||||
#View Model with Classification Head
|
||||
model.summary()
|
||||
|
||||
|
||||
#Compile the Model
|
||||
base_learning_rate = 0.0001
|
||||
|
||||
training_data = training_data.map(lambda x,y: (x, tf.one_hot(y,38)))
|
||||
validation_data = validation_data.map(lambda x,y: (x, tf.one_hot(y,38)))
|
||||
test_data = test_data.map(lambda x,y: (x, tf.one_hot(y,38)))
|
||||
|
||||
optimizer = tf.keras.optimizers.Adam(learning_rate=base_learning_rate)
|
||||
loss = tf.keras.losses.CategoricalCrossentropy()
|
||||
metrics = [tf.keras.metrics.CategoricalAccuracy()]
|
||||
|
||||
|
||||
|
||||
model.compile(optimizer=optimizer, loss=loss, metrics=metrics)
|
||||
|
||||
#Train the Model
|
||||
initial_epochs = 50
|
||||
|
||||
loss0, accuracy0 = model.evaluate(validation_data)
|
||||
|
||||
print(f"initial loss: {loss0}")
|
||||
print(f"initial accuracy: {accuracy0}")
|
||||
|
||||
lr_schedule = tf.keras.callbacks.ReduceLROnPlateau(
|
||||
monitor="val_loss",
|
||||
factor=0.1,
|
||||
patience=5,
|
||||
min_lr=1e-6
|
||||
)
|
||||
|
||||
early_stopping = tf.keras.callbacks.EarlyStopping(
|
||||
monitor="val_loss",
|
||||
patience=10,
|
||||
restore_best_weights=True
|
||||
)
|
||||
|
||||
history = model.fit(training_data,
|
||||
epochs=initial_epochs,
|
||||
validation_data=validation_data,
|
||||
callbacks=[lr_schedule, early_stopping])
|
||||
|
||||
model.save("crop-classifier-better-test.keras")
|
||||
|
||||
#Evaluate Model
|
||||
results = model.evaluate(validation_data)
|
||||
print(f"Validation Loss: {results[0]}")
|
||||
print(f"Validation Accuracy: {results[1]}")
|
||||
|
||||
results = model.evaluate(test_data)
|
||||
print(f"Test Loss: {results[0]}")
|
||||
print(f"Test Accuracy: {results[1]}")
|
||||
|
|
@ -0,0 +1,20 @@
|
|||
[build-system]
|
||||
requires = ["setuptools", "wheel"]
|
||||
build-backend = "setuptools.build_meta"
|
||||
|
||||
[project]
|
||||
name = "dermy-model"
|
||||
version = "0.1.0"
|
||||
description = "A Image Classification Model for classifying Moles"
|
||||
authors = [{ name = "r0r5chach", email = "r0r-5chach.xyz@proton.me" }]
|
||||
readme = "README.md"
|
||||
license = { file = "LICENSE" }
|
||||
dependencies = [
|
||||
"matplotlib",
|
||||
"numpy",
|
||||
"tensorflow",
|
||||
]
|
||||
|
||||
[too.setuptools]
|
||||
packages = ["dermy-model"]
|
||||
include_package_data = true
|
||||
Loading…
Reference in New Issue