import io import numpy as np import tensorflow as tf import os from PIL import Image def preprocess_image_bytes(image): image = Image.open(io.BytesIO(image)) image = np.array(image) image = np.expand_dims(image, axis=0) return image # Import Image and Model as bytes (Simulate call from API) benign_image_bytes = open("data/test/benign/5.jpg", "rb").read() malignant_image_bytes = open("data/test/malignant/1.jpg", "rb").read() model_bytes = open("models/mobilenet_v3.keras", "rb") # Convert model to Keras model model_file = open("model.keras", "wb").write(model_bytes.read()) model = tf.keras.models.load_model("model.keras") os.remove("model.keras") benign_image = preprocess_image_bytes(benign_image_bytes) malignant_image = preprocess_image_bytes(malignant_image_bytes) benign_prediction = model.predict(benign_image) malignant_prediction = model.predict(malignant_image) print(f"Benign Prediction: {benign_prediction}") print(f"Malignant Prediction: {malignant_prediction}")