from tflite_model_maker import model_spec from tflite_model_maker import image_classifier from tflite_model_maker.config import ExportFormat from tflite_model_maker.config import QuantizationConfig from tflite_model_maker.image_classifier import DataLoader DATA = "data/binary-classification/" MODELS = ["mobilenet_v2", "efficientnet_lite3", "efficientnet_lite4"] train_data = DataLoader.from_folder(DATA + "train") test_data = DataLoader.from_folder(DATA + "test") train_data, valid_data = train_data.split(0.8) for i in range(len(MODELS)): model = image_classifier.create(train_data, validation_data=valid_data, model_spec=model_spec.get(MODELS[i]), epochs=50, learning_rate=0.0001, dropout_rate=0.2, batch_size=64, use_augmentation=True) model.summary() loss, accuracy = model.evaluate(test_data) config = QuantizationConfig.for_float16() filename = f"dermy-binary-classification-{MODELS[i]}.tflite" model.export(export_dir="./models", export_format=ExportFormat.TFLITE, tflite_filename=filename, quantization_config=config)