updates #1

Closed
r0r-5chach wants to merge 1 commits from safetensors into test
2 changed files with 34 additions and 43 deletions

View File

@ -1,34 +1,43 @@
import numpy as np
import matplotlib.pyplot as plt
import tensorflow as tf
import os
from safetensors.numpy import save_file
DIR = "data/binary-classification"
#Import Data
PATH = os.path.join(os.getcwd(), DIR)
training_data = os.path.join(PATH, "train")
validation_data = os.path.join(PATH, "valid")
test_data = os.path.join(PATH, "test")
training_path = os.path.join(PATH, "train")
test_path = os.path.join(PATH, "test")
BATCH_SIZE = 64
IMG_SIZE = (224,224)
#TODO: Import data from both directories, then resplit into test, train, and validation
print(f"Train: {len(training_data)}\nValid: {len(validation_data)}\nTest: {len(test_data)}")
training_data = tf.keras.utils.image_dataset_from_directory(training_path,
shuffle=True,
batch_size=BATCH_SIZE,
image_size=IMG_SIZE,
validation_split=0.2,
subset="training",
seed=1234)
validation_data = tf.keras.utils.image_dataset_from_directory(training_path,
shuffle=True,
batch_size=BATCH_SIZE,
image_size=IMG_SIZE,
validation_split=0.2,
subset="validation",
seed=1234)
test_data = tf.keras.utils.image_dataset_from_directory(test_path,
shuffle=True,
batch_size=BATCH_SIZE,
image_size=IMG_SIZE)
#View Data
plt.figure(figsize=(10,10))
for images, labels in training_data.take(1):
for i in range(9):
ax = plt.subplot(3, 3, i+1)
plt.imshow(images[i].numpy().astype("uint8"))
plt.title(class_names[labels[i]])
plt.axis("off")
plt.show()
#Init Prefetching
@ -67,10 +76,10 @@ base_model.summary()
global_avg_layer = tf.keras.layers.GlobalAveragePooling2D()
feature_batch_avg = global_avg_layer(feature_batch)
prediction_layer = tf.keras.layers.Dense(38, activation="softmax")
prediction_layer = tf.keras.layers.Dense(2, activation="softmax")
predication_batch = prediction_layer(feature_batch_avg)
inputs = tf.keras.Input(shape=(160,160,3))
inputs = tf.keras.Input(shape=IMG_SHAPE)
x = data_augmentation(inputs)
x = base_model(x, training=False)
x = global_avg_layer(x)
@ -86,16 +95,14 @@ model.summary()
#Compile the Model
base_learning_rate = 0.0001
training_data = training_data.map(lambda x,y: (x, tf.one_hot(y,38)))
validation_data = validation_data.map(lambda x,y: (x, tf.one_hot(y,38)))
test_data = test_data.map(lambda x,y: (x, tf.one_hot(y,38)))
training_data = training_data.map(lambda x,y: (x, tf.one_hot(y,2)))
validation_data = validation_data.map(lambda x,y: (x, tf.one_hot(y,2)))
test_data = test_data.map(lambda x,y: (x, tf.one_hot(y,2)))
optimizer = tf.keras.optimizers.Adam(learning_rate=base_learning_rate)
loss = tf.keras.losses.CategoricalCrossentropy()
metrics = [tf.keras.metrics.CategoricalAccuracy()]
model.compile(optimizer=optimizer, loss=loss, metrics=metrics)
#Train the Model
@ -124,7 +131,6 @@ history = model.fit(training_data,
validation_data=validation_data,
callbacks=[lr_schedule, early_stopping])
model.save("crop-classifier-better-test.keras")
#Evaluate Model
results = model.evaluate(validation_data)
@ -134,3 +140,8 @@ print(f"Validation Accuracy: {results[1]}")
results = model.evaluate(test_data)
print(f"Test Loss: {results[0]}")
print(f"Test Accuracy: {results[1]}")
weights = model.get_weights()
weights_dict = {f"weight_{i}": w for i, w in enumerate(weights)}
save_file(weights_dict, "models/mobilenet_v3.safetensors")

View File

@ -1,20 +0,0 @@
[build-system]
requires = ["setuptools", "wheel"]
build-backend = "setuptools.build_meta"
[project]
name = "dermy-model"
version = "0.1.0"
description = "A Image Classification Model for classifying Moles"
authors = [{ name = "r0r5chach", email = "r0r-5chach.xyz@proton.me" }]
readme = "README.md"
license = { file = "LICENSE" }
dependencies = [
"matplotlib",
"numpy",
"tensorflow",
]
[too.setuptools]
packages = ["dermy-model"]
include_package_data = true